
VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page1 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Content :-Files and Exception Handling: Streams and files, Namespaces,

Exception handling.

Overall, studying files and exception handling along with namespaces in programming can

lead to a deeper understanding of software development concepts and practices, ultimately

resulting in more efficient and robust code implementation.

C++ Files and Streams

In C++ programming we are using the iostream standard library, it

provides cin and cout methods for reading from input and writing to output

respectively.

To read and write from a file we are using the standard C++ library called fstream. Let

us see the data types define in fstream library is:

Data

Type

Description

fstream It is used to create files, write information to files, and read information

from files.

ifstream It is used to read information from files.

ofstream It is used to create files and write information to the files.

C++ FileStream example: writing to a file

Let's see the simple example of writing to a text file testout.txt using C++ FileStream

programming.

1. #include <iostream>

2. #include <fstream>

3. using namespace std;

4. int main () {

https://www.javatpoint.com/cpp-tutorial

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page2 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

5. ofstream filestream("testout.txt");

6. if (filestream.is_open())

7. {

8. filestream << "Welcome to javaTpoint.\n";

9. filestream << "C++ Tutorial.\n";

10. filestream.close();

11. }

12. else cout <<"File opening is fail.";

13. return 0;

14. }

Output:

The content of a text file testout.txt is set with the data:
Welcome to javaTpoint.

C++ Tutorial.

C++ FileStream example: reading from a file

Let's see the simple example of reading from a text file testout.txt using C++

FileStream programming.

1. #include <iostream>

2. #include <fstream>

3. using namespace std;

4. int main () {

5. string srg;

6. ifstream filestream("testout.txt");

7. if (filestream.is_open())

8. {

9. while (getline (filestream,srg))

10. {

11. cout << srg <<endl;

12. }

13. filestream.close();

14. }

15. else {

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page3 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

16. cout << "File opening is fail."<<endl;

17. }

18. return 0;

19. }

Note: Before running the code a text file named as "testout.txt" is need to be created

and the content of a text file is given below:
Welcome to javaTpoint.
C++ Tutorial.

Output:

Welcome to javaTpoint.

C++ Tutorial.

C++ Read and Write Example

Let's see the simple example of writing the data to a text file testout.txt and then

reading the data from the file using C++ FileStream programming.

1. #include <fstream>

2. #include <iostream>

3. using namespace std;

4. int main () {

5. char input[75];

6. ofstream os;

7. os.open("testout.txt");

8. cout <<"Writing to a text file:" << endl;

9. cout << "Please Enter your name: ";

10. cin.getline(input, 100);

11. os << input << endl;

12. cout << "Please Enter your age: ";

13. cin >> input;

14. cin.ignore();

15. os << input << endl;

16. os.close();

17. ifstream is;

18. string line;

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page4 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

19. is.open("testout.txt");

20. cout << "Reading from a text file:" << endl;

21. while (getline (is,line))

22. {

23. cout << line << endl;

24. }

25. is.close();

26. return 0;

27. }

Output:

Writing to a text file:

 Please Enter your name: Nakul Jain

Please Enter your age: 22

 Reading from a text file: Nakul Jain

 22

C++ getline()

The cin is an object which is used to take input from the user but does not allow to

take the input in multiple lines. To accept the multiple lines, we use the getline()

function. It is a pre-defined function defined in a <string.h> header file used to accept

a line or a string from the input stream until the delimiting character is encountered.

Syntax of getline() function:

There are two ways of representing a function:

o The first way of declaring is to pass three parameters.

1. istream& getline(istream& is, string& str, char delim);

The above syntax contains three parameters, i.e., is, str, and delim.

Where,

is: It is an object of the istream class that defines from where to read the input stream.

str: It is a string object in which string is stored.

delim: It is the delimiting character.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page5 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Return value

This function returns the input stream object, which is passed as a parameter to the

function.

o The second way of declaring is to pass two parameters.

1. istream& getline(istream& is, string& str);

The above syntax contains two parameters, i.e., is and str. This syntax is almost similar

to the above syntax; the only difference is that it does not have any delimiting

character.

Where,

is: It is an object of the istream class that defines from where to read the input stream.

str: It is a string object in which string is stored.

Return value

This function also returns the input stream, which is passed as a parameter to the

function.

Let's understand through an example.

First, we will look at an example where we take the user input without using getline()

function.

1. #include <iostream>

2. #include<string.h>

3. using namespace std;

4. int main()

5. {

6. string name; // variable declaration

7. std::cout << "Enter your name :" << std::endl;

8. cin>>name;

9. cout<<"\nHello "<<name;

10. return 0;

11. }

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page6 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

In the above code, we take the user input by using the statement cin>>name, i.e., we

have not used the getline() function.

Output

Enter your name :

John Miller

Hello John

In the above output, we gave the name 'John Miller' as user input, but only 'John' was

displayed. Therefore, we conclude that cin does not consider the character when the

space character is encountered.

Let's resolve the above problem by using getline() function.

1. #include <iostream>

2. #include<string.h>

3. using namespace std;

4. int main()

5. {

6. string name; // variable declaration.

7. std::cout << "Enter your name :" << std::endl;

8. getline(cin,name); // implementing a getline() function

9. cout<<"\nHello "<<name;

10. return 0;}

In the above code, we have used the getline() function to accept the character even

when the space character is encountered.

Output

Enter your name :

John Miller

Hello John Miller

In the above output, we can observe that both the words, i.e., John and Miller, are

displayed, which means that the getline() function considers the character after the

space character also.

When we do not want to read the character after space then we use the following

code:

1. #include <iostream>

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page7 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

2. #include<string.h>

3. using namespace std;

4. int main()

5. {

6. string profile; // variable declaration

7. std::cout << "Enter your profile :" << std::endl;

8. getline(cin,profile,' '); // implementing getline() function with a delimiting character.

9. cout<<"\nProfile is :"<<profile;

10. }

In the above code, we take the user input by using getline() function, but this time we

also add the delimiting character('') in a third parameter. Here, delimiting character is

a space character, means the character that appears after space will not be considered.

Output

Enter your profile :

Software Developer

Profile is: Software

Getline Character Array

We can also define the getline() function for character array, but its syntax is different

from the previous one.

ADVERTISEMENT

Syntax

1. istream& getline(char* , int size);

In the above syntax, there are two parameters; one is char*, and the other is size.

Where,

char*: It is a character pointer that points to the array.

Size: It acts as a delimiter that defines the size of the array means input cannot cross

this size.

Let's understand through an example.

1. #include <iostream>

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page8 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

2. #include<string.h>

3. using namespace std;

4. int main()

5. {

6. char fruits[50]; // array declaration

7. cout<< "Enter your favorite fruit: ";

8. cin.getline(fruits, 50); // implementing getline() function

9. std::cout << "\nYour favorite fruit is :"<<fruits << std::endl;

10. return 0;

11. }

Output

Enter your favorite fruit: Watermelon

Your favorite fruit is: Watermelon

C++ Namespaces

Namespaces in C++ are used to organize too many classes so that it can be easy to

handle the application.

For accessing the class of a namespace, we need to use namespacename::classname.

We can use using keyword so that we don't have to use complete name all the time.

In C++, global namespace is the root namespace. The global::std will always refer to

the namespace "std" of C++ Framework.

C++ namespace Example

Let's see the simple example of namespace which include variable and functions.

1. #include <iostream>

2. using namespace std;

3. namespace First {

4. void sayHello() {

5. cout<<"Hello First Namespace"<<endl;

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page9 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

6. }

7. }

8. namespace Second {

9. void sayHello() {

10. cout<<"Hello Second Namespace"<<endl;

11. }

12. }

13. int main()

14. {

15. First::sayHello();

16. Second::sayHello();

17. return 0;

18. }

Output:

Hello First Namespace

Hello Second Namespace

C++ namespace example: by using keyword

Let's see another example of namespace where we are using "using" keyword so that

we don't have to use complete name for accessing a namespace program.

1. #include <iostream>

2. using namespace std;

3. namespace First{

4. void sayHello(){

5. cout << "Hello First Namespace" << endl;

6. }

7. }

8. namespace Second{

9. void sayHello(){

10. cout << "Hello Second Namespace" << endl;

11. }

12. }

13. using namespace First;

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page10 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

14. int main () {

15. sayHello();

16. return 0;

17. }

Output:

Hello First Namespace

C++ Exception Handling

Exception Handling in C++ is a process to handle runtime errors. We perform

exception handling so the normal flow of the application can be maintained even after

runtime errors.

In C++, exception is an event or object which is thrown at runtime. All exceptions are

derived from std::exception class. It is a runtime error which can be handled. If we don't

handle the exception, it prints exception message and terminates the program.

Advantage

It maintains the normal flow of the application. In such case, rest of the code is

executed even after exception.

C++ Exception Classes

In C++ standard exceptions are defined in <exception> class that we can use inside

our programs. The arrangement of parent-child class hierarchy is shown below:

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page11 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

All the exception classes in C++ are derived from std::exception class. Let's see the list

of C++ common exception classes.

Exception Description

std::exception It is an exception and parent class of all standard C++

exceptions.

std::logic_failure It is an exception that can be detected by reading a code.

std::runtime_error It is an exception that cannot be detected by reading a code.

std::bad_exception It is used to handle the unexpected exceptions in a c++

program.

std::bad_cast This exception is generally be thrown by dynamic_cast.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page12 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

std::bad_typeid This exception is generally be thrown by typeid.

std::bad_alloc This exception is generally be thrown by new.

C++ Exception Handling Keywords

In C++, we use 3 keywords to perform exception handling:

o try

o catch, and

o throw

Moreover, we can create user-defined exception which we will learn in next chapters.

C++ try/catch

In C++ programming, exception handling is performed using try/catch statement. The

C++ try block is used to place the code that may occur exception. The catch block is

used to handle the exception.

C++ example without try/catch

1. #include <iostream>

2. using namespace std;

3. float division(int x, int y) {

4. return (x/y);

5. }

6. int main () {

7. int i = 50;

8. int j = 0;

9. float k = 0;

10. k = division(i, j);

11. cout << k << endl;

12. return 0;

13. }

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page13 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Output:

Floating point exception (core dumped)

C++ try/catch example

1. #include <iostream>

2. using namespace std;

3. float division(int x, int y) {

4. if(y == 0) {

5. throw "Attempted to divide by zero!";

6. }

7. return (x/y);

8. }

9. int main () {

10. int i = 25;

11. int j = 0;

12. float k = 0;

13. try {

14. k = division(i, j);

15. cout << k << endl;

16. }catch (const char* e) {

17. cerr << e << endl;

18. }

19. return 0;

20. }

Output:

Attempted to divide by zero!

C++ User-Defined Exceptions

The new exception can be defined by overriding and inheriting exception class

functionality.

C++ user-defined exception example

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page14 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Let's see the simple example of user-defined exception in which std::exception class

is used to define the exception.

1. #include <iostream>

2. #include <exception>

3. using namespace std;

4. class MyException : public exception{

5. public:

6. const char * what() const throw()

7. {

8. return "Attempted to divide by zero!\n";

9. }

10. };

11. int main()

12. {

13. try

14. {

15. int x, y;

16. cout << "Enter the two numbers : \n";

17. cin >> x >> y;

18. if (y == 0)

19. {

20. MyException z;

21. throw z;

22. }

23. else

24. {

25. cout << "x / y = " << x/y << endl;

26. }

27. }

28. catch(exception& e)

29. {

30. cout << e.what();

31. }

32. }

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming Using
C++

ALIGARH

 Unit 5 - Files and Exception Handling

Page15 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Output:

Enter the two numbers :

10

2

x / y = 5

Output:

Enter the two numbers :

10

0

Attempted to divide by zero!

-->

Note: In above example what() is a public method provided by the exception class. It

is used to return the cause of an exception.

